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Abstract

Some numerical results are presented for the admittance of an
infinite cylindrical antenna excited at a circumferential gap of finite thick-
ness and immersed in a lossy, incompressible magnetoplasma, with the
antenna axis parallel to the static magnetic field. The calculations are
performed using a free-space layer of variable thickness (the vacuum sheath)
to approximate the positive ion sheath which forms about a body at floating
potential in a warm plasma. The antenna admittance is obtained by a direct

numerical integration of the Fourier integral for the antenna current, and is

presented for plasma parameter values typical of the E-region of the ionosphere.

The results obtained show that in the frequency range encompassing the
electron plasma (fp), electron cyclotron (fh) and upper hybrid frequencies, the
vacuum sheath considerably reduces variations in the admittance magnitude
compared with the sheathless case. An admittance maximum which occurs at
fh for the sheathless case and which is more pronounced when fp> fh than for
h’ is reduced in amplitude and shifted upward in frequency

by the vacuum sheath. The susceptance exhibits a slight minimum and the

the case where fp< f

conductance a more pronounced minimum near fp’ when fp> fh’ while for

fp< fh’ the conductance minimum is then less pronounced than the susceptance
minimum, with the locations of these minima not appreciably different for the
sheathless and vacuum sheath cases.

A comparison of these calculated results with some measurements of
antenna impedance in the ionosphere, shows there to be a qualitative agreement
between theory and experiment. In particular, an admittance minimum or dis-
continuity has be observed at the electron plasma frequency, similar to that
seen in the calculated results, while an admittance maximum has been found

above the electron cyclotron frequency, indicating the presence of a sheath.

vii



I. Introduction

There is a great deal of interest today in the characteristics of
antennas located in plasma media, such as the ionosphere, since a rocket
or satellite-borne antenna may serve as a probe to determine the pro-
perties of the ambient ionosphere, such as electron plasma frequency,
collision frequency and temperature. The present study has been under-
taken in an attempt to gain a better understanding of the relative importance
of the various factors which may influence the antenna admittance in the
ionospheric plasma, such as acoustical and sheath effects which arise from
the non-zero plasma temperature, and the ionospheric magnetic field., The
antenna geometry chosen for the investigation is that of the infinite, cylin-
drical dipole driven at a circumferential gap of non-zero thickness, a
geometry which allows a rigorous boundary value problem approach to be
used. The case of the compressible (non-zero-temperature) magnetic-
field-free plasma was reported on previously by the author (Miller, 1967a),
which we refer to hereafter as I, and which is extended in the present report
to the anisotropic plasma, there being a static magnetic field parallel to the
infinite antenna axis. The present analysis will differ from I in that the
electrokinetic (EK) electron pressure wave will not be included in the analysis,
and it is in this sense, a zero temperature treatment. We will, as in I however,
attempt to account for the positive ion sheath which forms about a body at
floating potential in a non-zero temperature plasma. The plasma model thus
used in that the plasma is of non-zero temperature insofar as its static behavior
is concerned, but of zero temperature (imcompressible) in relation to its
dynamic behavior.* While it would be desirable and more realistic to treat
the compressible magnetoplasma, this is a generally very much more difficult
problem than that discussed in I or to be considered here, and its treatment
will be deferred to a subsequent report. A comparison of the theoretically
determined results will be made with some experimental measurements of
antenna impedance in the ionosphere. The RMKS system of units is used
unless otherwise indicated, and equations referred to from I will be preceded

by I.

*This means that the pressure term is set equal to zero in the time varying

electron equation of motion.



II. Formulation

Our description of the plasma fields proceeds from the time

dependent Maxwell's equations and the electron equation of motion,

as
VRE (x, 0= U (2, 1 (1)
VH (£, 1= €57 E (r, - N(x, 9V(r, ) (2)

&+ VU OV 9= -1 B (1, 9- VY5, 0

-—Z—f\;%”—t} - L1 v(r, OxH(x, 1) (3)

(% + V(r, t): V)N(r, th N(r, 1)V V(r, t)=0 (3a)
N(r, ) T(r, ) 1T < constant (3b)
P(r, t)=kN(r, )T(r, 1) (3¢)

where E and H are the total electric and magnetic fields, V, N and P are the
macroscopic electron velocity, number density, and pressure, T is the
electron temperature, -q and m are the electron charge and mass, )/ is the
electron collision frequency, €o and IL(O are the permittivity and permeability
of free space, k is Boltzmann's constant and r and t are the space and time
coordinates. It should be noted here that while the pressure term in (3) has
been indicated to be a function of both space and time coordinate, our treat-
ment here will neglect the pressure term in (3). The equations (3a-3c) are
included to show the full set required for the compressible plasma. The
quantity ¥ is the ratio of specific heats for electron gas, and it may be seen
from (3b) and (3c) that if ¥ = 0, then the dynamic pressure term is zero. This

then is the implicit assumption in the folowing analysis for the unifrom plasma.




We deal with (1) - (3) in the usual way, introducing time varying
or dynamic perturbation quantities small in comparison with the non-time
varying or static quantities. Since the boundary value problem to be treated
depends on the model used to represent the positive ion sheath, we will treat
separately in turn in the following discussion the two sheath models to be
used in the analysis. The first, or vacuum sheath model, replaces the actual
sheath by a free space layer. In the second, or inhomogeneous sheath model,
an attempt is made to include the actual sheath inhomogeneity in the analysis.
In either case, the sheath forms a concentric layer between the antenna,
located with its axis coincident with the z axis of the cylindrical coordinate
system (p,®, z) and the external uniform plasma, extending from c<p<s,
where c and s are the cylinder and sheath-uniform plasma interface radii
respectively. The antenna is excited by a circumferential gap of finite thick-
ness 6 across which a voltage Vo’ independent of azimuthal coordinate @ ,
is applied. Contrary to the static magnetic-field-free case, azimuthal as
well as z-directed currents are excited on the antenna. Our results will be
primarily concerned with the z-component of current which determines the

admittance, but some results will also be given for the ¢ -current component.



II. 1 The Vacuum Sheath
The merits and advantages of using the vacuum sheath model have
been discussed in I, and so will not be considered further here. Equations

(1) - (3) are linearized by introducing the following set of variables,

E (r,t) = e (r,t) (4a)
H(r,t) =HZ +h(r,t) ; |nl << lHI (4b)
Vi, t) = vt (4c)
N (r,t) =N +n(r,t): |n| << |N| (4d)
T(r,t)=T (4e)
P (r,t)= P (41)

The static externally applied magnetic field in the z-direction is H, and
since the plasma is uniform, no static components of electric field or

electron density are required. Upon introducing (4) into (1)-(3), we obtain

vxe (r,t) = - M g—h (r,t) (5)
xh (r, t) = co%e(r t) -q N v (r, t) (6)
g—v(rt)-——rg—ng(gt)—yv(rt)— by Hv (r, t)xZ (7)
If we use the Fourier transform pair
59
g(y,t):—z—% elwte(r w)dow
-0
e “elr,tat
then (5) - (7) becomes
Ve (r,0) = -iou B (r, @) (8)
T (r,0) = e €, € (r,w) -q N T (z, ) (9)
(ico+2/)§(£,w)= —%[E(Lw)i—uoHi(Lm) x%] (10)




We may solve for z(z, w) from (10) to get

V.= -y e
Z iw'm z
2 w
IS eosz [fev —}"l
Vo= - @ lw
iw'q
2
V_ = - e -3
p iw'g p iw
where
2
0_)2 = ﬂ = (2-”- f )2
P Em P
. u H
h ~ m
w' = w(l+ Yiw)

Equation (9) can then be written

e
)

am2

Vxh = o € €
where
Fl €' 0
€ = ' 0
L0 0 &
2
“p
d € =1- '
an 1 w ' (1-w feo 2)
9 h
"o
Eé =1- w w'
W w
€ = ph ‘
iww'2 (1-w 27@'2

o

[1 —(wh/m‘)z ]‘1

-1

Ll -(wh/w‘)z ‘

4

(11a)

(11b)

(11c)

(9a)

(12a)

(12b)

(12¢)

(124d)



The component equations of (8) and (9) are then obtained by

introducing a second Fourier transform pair

o,
c(pf, = e P?T(r, w0 az
-
Smw = [ePEE e, 0 ap
€ r, po €
-0
and are found to be
-ip &, = —1w;,¢ohp (13a)
= it . =~
ip eP e = 10)“01’1(p (13Db)
== =
& T € [p = -eu b (13¢)
~ ~ 1=
_iBh(p iw €O( €1ep+ € e, ) (14a)
= ~t ~ ga=
iB hp -h = o 60(61640 -t ep) (14Db)
= = -
h@+ h@ lp = iw €Ot362 (14c)

where the prime indicates differentiation with respect to p. Note that the
fields are independent of the aziumthal coordinate.
We may obtain expression for the p and ¢ field components in

terms of the z components, which are

?p = -i (B A§'Z oo B’fl'z )/ D (15a)
& - i (BB;:'Z - ou A’ﬁ'z ) / D (15b)
B, = Be, lw, (16a)
ﬁ(p = im€o(€1A - €'B) ZZ‘/D+16B§Z'/D (16b)




Eo -1
_ 2 !
B = KEOE
D = AZ+ B2
2 2
KEO_ W HoCo

Finally, two coupled scalar wave equations for the z-components of the

field are obtained, i~
2 2|
( C v+ Z ) |1 = 0 (17)
= p = h
Z
with ' 9
1-B°A/D —Bwuo B/D
g = R ) 1 (18a)
Bw€O€ A/D 1—KEO€ B/D
2 ]
Keo €3 O
z = (18b)
O -A

We note that when the static magnetic field is made zero, then B and
!
€ become zero, and (17) decouples. The equations are decoupled by a

standard technique when there is a non-zero magnetic field. First we let

—~
~

¢l [Tin Tio G
H = (19)
hzj Tor Toa] | Gg
so that (17) may be written
(C vpz +Z) TG = O (20)
Multiplying from the left by C "L and then by l‘_ 1yields
vic +T7E z16 - O (21)



e (Kpo 8"/ €) €5 B €'1€, 1

c  z- o 5 )
o€ €,€ 1€, 5 K (€,+€2€)p

If T is so chosen as to diagonalize the (;_lé term in (21), then the equations

are coupled, and

7 G+ A G=0:3=1, 2 (22)
where the kj’ the eigen values of the matrix
¢=c’'z
are solutions of
Q'Ifkjij L j=1,2 (23)
where 'I_j is an eigen vector of (=I|. Solving for /\j from
-A; 1] =0 (24)
j =
where the | | denotes the determinant of the enclosed matrix and 1 is the identity

matrix, we obtain

_ ! 1 ! 1 2 1 3
/\j- [(C11+C22)iVC11+C22) -a|c'] ]/2,(25)
The eigen vector elements are found from (23)

/(/\ C (26a)
/(l c (26b)

Tl 22 12

T217T11C21
Since there are two equations for determining the four eigen vector

elements Tij’ two of them may be chosen arbitrarily,




and for convenience we set T11 = T22 = 1 in the following.
The solutions of (22) with which we are concerned are simply
given by
G - AJ.HO(z) (‘\/XJ.,;) (27)

since (22) applies to the uniform plasma outside the vacuum sheath where
there is one outward traveling wave of amplitude Aj for each Gj' The Aj
are of course determined by the boundary conditions. One precaution must
be mentioned here and that is that the Gj must be well-behaved at infinity.
Consequently, the sign of the imaginary part of the Hankel function argument
in (27) must be always negative, which specifies the sign of the root of Aj’
Other ways of choosing the proper solutions for Gj have been discussed by
Seshadri and Wu (1966), which involve time casuality and require changing
the Hankel function kind rather than the root sign of k,\ to acheive the same
end. In the numerical approach to be taken here, the former approach is
straight forward and perhaps simpler to apply, and for this reason has been
used in obtaining our numerical results.

The electric fields in the vacuum sheath are easily obtained from

scalar potential functions as

S, = Vx( (28a)
A~ 1 A 3
e - KEO,V x 7 x ((h 2) (28b)

where the e and m subscripts denote the transverse electric (TE) (ez=0) and
transverse nagnetic (TM) (hz=0) polarizations, and the magnetic fields are

found from (13). The potential functions are solution to

Q

2 2 ~
(Vp + Kg,) e m " 0 (29)
and are ~
(1) 30

9



where

2 _ 2 g2
EO_KEO B

and the superscripts I and R denote respectively the fields incident on the
sheath-plasma interface from the antenna, and those reflected back towards
the antenna  with the wave amplitudes given by A.

The specification of the problem is completed by giving the boundary
conditions which the fields must satisfy at the antenna surface and the sheath-
plasma interface. Six scalar boundary conditions are necessary since ihere
are six wave amplitudes, or spectral Fourier coefficients, which are func-
tions of Band w, to be determined. The continuity of the tangential electric
and magnetic fields at the sheath-plasma interface, and the vanishing of the
¢ -component of electric field on the antenna surface produces five of the
required six equations.

The final boundary condition is a function of the exciting source, in
this case a circumferential gap of thickness 6 centered at z=0. A voltage
Vo(t) which is indepe /Snt of azimuthal angle ¢, is applied across the gap,
so that -Vo(t) =_<5/ j ez(c, z, t)dz (31)

2

since e_ is zero forizl >6/2. If 6<<K and (S<< 2c, where c is the

Eo
antenna radius, then e, is practically uniform across the gap, and
[
ez(c,z,t)= —Vo(t) /1C;  lzl< 6/2
=0 ozl >0/2 (32)

If the source is nonchromatic, i.e.

V (1) = V_e @t

0 o)

then

~ t

ez(c,z,w) = - VO 6(&)—(») 2T /6 (33)

1

where (S(w—w ) is the delta function, and

~ B Ny sin 6/2)

ez(c,B , W) VO (S(w w ) ‘(_6%777— 2m
S(B)Vo 6(w—w') 27 (34)
S (B)

i

H

10




Upon using (28), (30) and (34), the boundary conditions on the

antenna may be written as

2
I 2 -
JBo | Al 1% Qoo +al g VAL ol 50) G5
Eo
al @ (Ag,o + aBaull) Agee) = O (35b)

where the prime now denotes differentiation with respect to argument,

In a similar fashion, the boundary conditions at the sheath-plasma inter-

face ( p=s) are

2 F 7
Eo I H (2) R

ED Ol -5 (G
KE m o m o Eo z
O

.. FAEE B (g + af H W (A9 = & (36b)

@

ey [, @ Ry (1) 5
no KEO LAe Ho ( AEOS) + A" H (,XEOS) = h, (36¢)
i )LEO I Al g (2) ( \w.s) +aR (1) A s) |= P (36d)

no L m o Eo® AL Hy Eo® ®

where the quantities on the righthand side of (36) are the plasma fields
evaluated at p=s.

The 6 x 6 matrix represented by (35) and (36) may be reduced, by
the use of (15), (16), (19) and (27), to the following system of equations,

with the prime denoting differentiation with respect t o argument,

A S
m 1
al 0
A e (31)
Al 0
A S
L BE 2_ L 2_
6 1 _
with A = V, Ulw-w) 27 S (B) A

11



and where

Eo
TZo/LEo H

2
_/\Eo W(c, s)

v

1s

H

le

1
iK H 1s

1lc

K

Eo

ch

! t

W(c !

A (v,S) ; C,H
Eo

H

lc

.Y 2 !
. _1AE0 W(c , s) .
) t 2’
TZOKEOH lc 21

i\, Wie, s)

Tlo

 E—

H
nx

H
n

ch

_ (n)
B Ho ( AEO x)

_ (2)
= H_ (\[XHS)

W(c,s) =H, H -H, H

lc™ 2s 1s  2c¢

W(c', s)= H'lCH - H, H'

)= 1 -
W(c, s") HlCH 9 H

28 1s™ 2c¢

1
S 1sH2c

1 — ! 1 - t 1
Wie', s")=H ch 2s H 1sH 2s

Q
l

@
"

O
[}

!
1

iV, (g B-wu, ATy /D
i\[Xz (BBT12— quA) /] D

iV, [w€o€1A+B(B Ty, - w€0€')]/ D

;o 0; H,;, T

iﬂ; [w€o€1A T o+B(B -« €€ le)]/ D

12

(38a)

(38Db)

(38¢)

(39a)

(39b)

(40a)

(40Db)

(40c)

(404)




Note that, in the plasma

”ﬁ@ = C,AH + C A H, (41a)
%, = CLAH + CyAH, (41b)
B, 5 AH] T A, (41c)
b, = Ty A H ¢ Ay H, (41d)

where the s in (39b) is replaced by p, while in the sheath

~ 1 st 1 =21
- = o (41e)
hlp C3 €, * C4 hz
s 1 ~1 1T~
> = = b (411)
€ = C1¢, T Cyh,
1 1 - ,
where C1 = Clwﬁl ; C3 = C3/ lg
! !
Cy= CuNAys Cy= CyNA,
with T12 =Ty = 0
and wp is set equal to 0.
We may finally obtain the current on the antenna as
IZ(Z, t) - 21'rchcp(z, t)
Q0 '
-icV (ot +5 2z K !
= o ff e S(w-w') Bo  j(2) (Awc)
} o Eo
no - Eo
. 1
. 4 FR —S(B) df dw
e T m H(2)(A e)
o "“Eo
. iwt . ,
T T3 ) (2) A
Tlo o’ H ] (AEOC) Eo
4i <R
Yo A | 9B
= 1 (z,w)e lot (42)
Z

13



I(P (z, t) =—2Trchz(z, t)

4v e AR s(8)d 1,'dp
_ o] ffel(w t+BZB(&)'w') e W
QO

K. m (2)'
T(o Eo o H0 (/\Eoc)
i —-R
4v et A 'S(8)d
o iz " e
noKEoﬂ HO Eo°
-
= I (z,w) eiwt = 2mcK _(z, w) eimt
@ 3 ® )

Note that K@ is the @ -component of current density, but that we will

present the quantity I, in order to make a direct comparison with I.Z.

o)
We see that I contains two terms, the first being that for the
free space current on the infinite antenna and the second term, which

contains Ki, showing the perturbing influence of the plasma on the

antenna current. Thus, with Izo the free space current,

Iz(z,w) - Izo(z,w) = AIZ(z,w)

(6 6]
where icK., V P22 () o)
1 (2w = - Eo o N ° Eo ” 5(8)d (44)
7?o D Eo

(2)
Ho ( AEOC)

Q0,
4v i -
AIZ(z,w) = _ﬁ_o e_li%_ S(B)AE1 ap (45)
o™ __J 1P, 0

The numerical evaluation of Izo(z, w) has been carried out by Duncan
(1962), and Einarson (1966) while approximate analytic expressions
have been derived by Chen and Keller (1962) and Fante (1966). A dis-
cussion of both aspects of this problem is given by Miller (1967b).

Note that the limits of integration of (42) - (45) may be transformed to
the range zero to infinity because the integrand functions are even in B,

and the exponential function then becomes cos(g z).

1k




An important point to consider in evaluating (44) is that there is
an integrable singularity atg = KEo in the real part of the integral, but
non-integrable singularities on either side of 8 = KEo in the imaginary
part. The real component of free space current is thus more readily
obtained than the imaginary part, since in addition, the real component
comes entirely from the finite range § = 0 to KEo while the imaginary
component comes from the entire range of 3 . When the entire integrand
appearing in (42) is examined however, it may be shown that the non-
integrable singularities cancel, with the result that the integration contour
can follow the real B -axis. The evaluation of (43) also follows in the same
way. The details are shown in Appendix A.

The numerical problem of solving (42) and (43) is, while formally
straightforward, quite complicated because of the nature of the integrand
functions. These integrand functions vary over a wide range in magnitude,
and are very rapidly changing in the vicinity of their near singularities with
the result that the abscissa spacing used for the summing process must be
adjusted accordingly. An integration program using a variable integration
interval width, and making use of the Romberg integration technique was
developed for this purpose. The details are given by Miller (1967a); the
main feature of this method is that the Romberg technique provides a con-
vergence test which allows the integration to be performed maintaining a
desired accuracy within each finite-width interval of the B wvariation, while
at the same time nearly optimizing the number of abscissa points required
for this desired accuracy.

The antenna admittance is finally obtained from

1(§/2, 0
Y(w) = 2 = G(w) + iB(w) (46)

v
o

15



where G is the conductance and B the susceptance. Note that B is finite
only for a non-zero exciting gap thickness, while G is not generally sen-
sitive to the gap thickness, at least for small gaps. Further discussion
of this question is given by Miller (1967b).

It should be noted that for the results to be presented, only (42),
evaluated at z = 6/2, was subjected to the convergence test used for the
numerical integration. This was done to minimize the computer time
required (which was about 1 minute/admittance value on an IBM 7090
computer) to obtain the admittance values, the quantities of primary
interest in this study. Since the integrand of (43) may require a different
sequence of abscissa spacings for a prescribed summation accuracy than

(42), this means that the values obtained for I may not have the same

@
accuracy as the corresponding IZ( (5/2, w). This same observation applies

to (42) evaluated for values of z other than (5/2, the value of z used for the
convergence test.

It is felt that the convergence errors associated with replacing the
integration process by a summation are no larger than 1 or 2 units in the
third significant figure in the admittance. Another factor in determining
the final accuracy is the truncation error resulting from terminating the
infinite integration range at a finitef3 value. The largestf value that could
be used generally was determined by overflow in the computer, i.e., numbers
too large for the computer were obtained. The real component of current
for the plasma medium, as for free space mentioned above, is convergent on
a finite B-range, generally well before any overflow problems are encount-

ered. The imaginary component on the other hand requires a considerably

greater B-range in order to be determined to the same accuracy as the real

16




component, but it may happen that overflow occurs before this range is
entirely integrated, with a resultant decrease in the relative accuracy
of the imaginary component. In addition, the imaginary component may
also change in sign asf is increasing, so that the error resulting from
too-early truncation of the integration because of overflow may be re-
latively much larger. The overall accuracy of the conductance is es-
timated to be no less than 0.1 percent. The susceptance may be less
well determined, and in presenting the results, those areas where the
susceptance is estimated to be known to no better than 10 percent ac-
curacy will be denoted. (A discussion or the truncation error resulting

when the B-range is not limited by overflow is given by Miller (1967a) ).
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II. 2 The Inhomogeneous Sheath

The inhomogeneous sheath boundry value problem differs from
that of the vacuum sheath discussed above in only the sheath of course,
since the fields in the external uniform plasma are described by the same
equations. Consequently, the discussion here is concerned only with the
sheath., The uniform plasma equations apply in the sheath, with the ex-

ception that now (4a) and (4d) are replaced by

E (r, t) = E(r) + el(r, t) ; J|e|] << (E| (4a) '
N (r, t) = N(r) + n(r, t) Inf << || (44d) '
P (r,t) = P(r) = kTN (r) (4f) !

We note that there is a static component of electric field in the sheath,

but since the EK wave is not considered in this analysis, its effect on the
EM wave is an indirect one produced by the resulting inhomogeneity in the
electron density in the sheath.

The static protions of (1-3) are now

Vx E (r) = 0 (47)
qE (p + ELIRE (48)

Since then from (47)

[5
g
©-

and N(r) = N_ exp [ D) /x T] (49a)
with NOO the electron density in the uniform plasma. The dynamic equations
are unchanged from those which apply in the uniform plasma except that now
N is replaced by N (r).

The static sheath potentlal ¢ is taken as

b - ¢, [s - ] (49D)
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with M an adjustable parameter and (Z)C the cylinder potential,

_ kT my 1
ch =" T4 1“( V ™ _1._)22 (49¢)

where m, is the ion mass and k is Boltzmann's constant. A more complete

discussion of this form for the potential is given by Miller (1966a).

The analysis follows that in the preceding section, through Eq. (16).
The wave equations corresponding to (17) however now have additional terms
involving the first derivative of the field components and cannot be decoupled
in the same way. It thus becomes preferable to deal numerically with the
first order differential equations (13) and (14) in the sheath and match these
to the analytic solutions obtainable in the uniform plasma at the sheath-uniform

plasma interface. We thus solve

A =~ ~
e, = iBe + LT hcp (50a)
= ! = oo
¢ = " © /| p - iep h (50b)
e T €% P (50c)
. : +
hZ 1m€o (€1 eq) € ep) if P c
= o = ~
hy = i€ €5 e, ~hy /o (50d)
~ - 1, ~
where e = —l(iw€'€ e + igh_ ) (50e)
i€ € ° @
o-1
and h = Bge (501)
i p T B e
subject to the boundary condition that at p = c:
=
_ (51a)
e(p 0
2 =-5(p) V, O (w-w') 27 (51b)
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fgco | sheath ~ Zcp |p1asma (52a)
£ | sheath = gz lplasma (52b)
Aﬁ@ I sheath ’ﬁq> |p1asma (52c)
;lz | sheath - ﬁz |p1asma (52d)

The plasma fields may be written explicitely in terms of the Fourier
coefficients for the transmitted fields, as in eq.(42 ), and upon

eliminating the Fourier coefficients from the boundary conditions (52 )

we obtain atp=s, with T = |1‘|
1 1 1= 1 1~ ~ 1 1 2% = 1

C,e, +Cyh = C,H, (eZ-lehZ) /HlT -C,H, (eZT21-hZ) /HzT (53a)
e, ! (/A i~ ] 1 ™ = 1

Cy€, + Cyh, =CgH, (eZ—T12hZ) /HlT -C,H, (eZT21—hZ) /H2T (53Db)

The fourth order differential equation (50) together with the
four boundary conditions (51) and (53) thus describe the problem of the
inhomogeneous sheath. Note that all quantities involving the electron
density are, in the sheath, functions of the radial variable.

The antenna current is obtained, as before, from the magnetic

field on the cylinder surface, and is

IZ (z,t) = 2mch,_ (c,z,t)

Qo

®
- [ o't +R Z)ﬁv (c,p,w") dB do
-0

Q

=ceimt f eiBzH (c,B) dB
-% P
=IZ(Z,w ) eiwt (54a)
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I(p(z,t) -2wchZ (c,z,t)

Qo
= :g? ff ei(w't + B z) ;Z (0,3 L w') d.B dw'
=00

= ¢ jel “h_(c.B,w) dB
(0 0]

= 1 (z,0) e ®t (54b)

VOS(B) 6(00-0.)') 2t h_ (c,B,w)

where h_(c,B,w)

The technique of solving such a two point boundary value problem
is discussed in detail by Miller (1966b). It involves in the present problem,
two numerical integrations, one to solve the differential equations and the
other to perform the integration over g . Consequently, this is a very time
consuming calculation, and for this report, numerical results are to be

presented for only the vacuum sheath model.
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III. Numerical Results
III. 1. The Infinite Antenna Admittance.

The results to be presented are for an antenna of radius ¢ = 1cm,

a gap thickness CS of 0.1 cm and plasma parameter values typical of the E
region of the ionosphere. An electron temperature of 1, 500 °K will be used
for the purpose of computing the vacuum sheath thickness X, which is given in
units of the electron Debye length QL *. For purposes of comparison, the
free-space antenna admittance is given in Fig. 1 over the frequency range
0.25 to 10 MHz. with the gap thickness a parameter on this one graph only,
ranging from 107! to 10 %cm. It may be seen that the conductance and
susceptance are rather slowly increasing functions of the frequency and in
addition, the susceptance is only slightly dependent upon the gap thickness,
over this frequency range. The results of Fig. 1 will be useful in illustrating
the magnitude of the perturbing influence of the plasma upon the antenna
admittance.

The antenna admittance in the plasma medium is shown as a
function of excitation frequency in Fig. 2 for a plasma frequency of 1.5 MHz,
an electron collision frequency of 10 sec_l, an electron cyclotron frequency of
1 MHz and a sheath thickness X, of 5 [}Z (s = 8.9988 cm) calculated for an
electron temperature of 1, 500 °K. The susceptance is seen to have a zero
close to, or at, the upper hybrid frequency wt2 = w}Z) + wi while the conduc-
tance has a rather sharp minimum there. Between the upper hybrid and plasma
frequencies, the conductance and susceptance both reach a maximum, with a
subsequent minimum at about the plasma frequency. Finally another larger
maximum is reached between the plasma and cyclotron frequencies, with the
conductance rather slowly decreasing in value as the frequency is futher decreased,

while the susceptance falls off much more rapidly. The susceptance actually

becomes capacitive again below approximately 0.4 MHz.
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c=lcm.
1.8

1.6— $=10" to 10 ¢cm.

G,, B,(Mhos) x 103

o
T

Fig. 1. The free-space infinite cylindrical antenna admittance as a
function of frequency with the exciting gap thickness, a
parameter, and a radius, c¢, of 1 cm.
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Fig. 2. The infinite antenna admittance as a function of frequency for

the zero-temperature magnetoplasma with a vacuum sheath
thickness, X, of 5 , a radius of 1 cm, an electron plasma

frequency of 1.5 MHz and electron cyclotron frequency of
1 MHz.
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Corresponding results for the same plasma parameter values
as for Fig. 2 except for zero sheath thickness are shown in Fig. 3. (The
regions of the curves on this graph and those to follow where the accuracy is
estimated to be no better than 10 per cent are shown by the superimposed
crosses. This estimate is based on examining the variation of the integrand
function and the behavior of the summed answer for (42) as the upper limit
is increased in magnitude. The results are presented because while the
accuracy may be less than desired, the general trend of the admittance can
be exhibited.) It is apparent that the essential features of the 5 I}l thick
vacuum sheath results are contained in a more exaggerated form in Fig. 3.

In particular, the minima in the conductance at the upper hybrid frequency
and that near the plasma frequency are more pronounced, while the maximum
in both susceptance and conductance has become much sharper while shifting
down from just below the plasma frequency to the cyclotron frequency. Below
about 0.5 MHz and above the upper hybrid frequency, the admittance for the

5 DJL sheath and sheathless cases are quite similar. It is apparent from
Figs. 2 and 3 that the sheath is fairly effective in decoupling the antenna

from the plasma, particularly at the electron cyclotron frequency.

For purposes of comparison, the antenna admittance for the com-
pressible, magnetic-field free plasma, with an electron temperature of 1, 500 °K,
is presented in Fig. 4 for X =5 [i and Fig. 5 for X =0, with the other
parameters the same as for Figs. 2 and 3. The susceptance zero and con-
ductance minimum which occur for the magneto-plasma at the upper hybrid
frequency are seen in the compressible magnetic-field-free plasma to occur
at the plasma frequency. The strucutre of the admittance curves in Figs.

4 and 5 below the plasma frequency is not as varied as that for the previous
case, but again a conductance and admittance maximum is found in this region.

It is of interest to remark that the results presented in I showed that except
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Fig. 3. The infinite antenna admittance as a function of frequency for

the zero-temperature magnetoplasma with zero sheath thick-
ness, an electron plasma frequency ot 1.5 MHz and electron
cyclotron frequency of 1 MHz.
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Fig. 4. The infinite antenna admittance as a function of frequency for

the warm, magnetic-field-free plasma with a vacuum sheath
thickness of 5 Dl , and an electron plasma frequency of
1.5 MHz.
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Fig. 5. The infinite antenna admittance as a function of frequency for
the warm, magnetic-field-free plasma with zero sheath thick-
ness and an electron plasma frequency of 1.5 MHz.
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for the zero temperature sheathless case, an admittance maximum of this
sort was found to occur below the plasma frequency. It appears that in
order for such an admittance maximum to result, a sheath, magnetic field,
or finite electron temperature are required.

Results corresponding to those of Figs. 2 and 3 are now given in
Figs. 6 and 7, where now fh = 1.5 MHz and fp = 1 MHz, the other parameter
values remaining the same, If we observe first the 5 DIL sheath case, it
may be seen that the conductance minimum at the hybrid frequency is now
narrower, and that the maximum in the conductance now occurs between the
cyclotron and upper hybrid frequencies. The region of inductive susceptance
is also not as wide in Fig. 6 as in Fig. 2. There is a conductance minimum,
not very pronounced, at the plasma frequency, while the susceptance has a
sharp minimum somewhat below the plasma frequency. Above 2 MHz, the
results of Figs. 2 and 6 are quite similar.

A similar comparison of Figs. 3 and 7 also shows a shifting upward
of the conductance and susceptance maxima to the new location of the cyclotron
frequency. Again, the region of inductive susceptance is smaller for the
1.5 MHz cyclotron frequency case, as was found for the 5 D, thick sheath.

4

Below the cyclotron frequency, the sheathless and 5 DE thick sheath cases of

Figs. 6 and 7 are quite similar, as was found previously for the 1 MHz cyclotron
frequency results.

In Figs. 8 and 9 are shown the azimuthal current, Itp = 2wc K,
calculated also at =z = (5/2, for the 5 DI, and zero sheath thickness cases
respectively and the same plasma parameters as Figs. 6 and 7. The azimuthal
current is seen to be most strongly excited in the vicinity of the upper hybrid
frequency for the 5 Dﬂ’ thick case, and except in this area is less than 10_2

of the axial current. For the sheathless case, the aximuthal current is largest

at the cyclotron frequency and is larger by comparison with the axial current
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Fig. 6. The infinite antenna admittance as a function of frequency for

the zero temperature magnetoplasma with a vacuum sheath
thickness of 5 D, , an electron plasma frequency of 1 MHz
and an electron cyclotron frequency of 1.5 MHz.
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Fig. 7. The infinite antenna admittance as a function of frequency for

the zero temperature magnetoplasma with zero sheath thick-
ness, an electron plasma frequency of 1 MHz and an electron
cyclotron frequency of 1. 5 MHz,
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than the situation for the 5 Dz thick sheath. The sheathless current is seen

to exhibit the basic features of the 5 DZ thick sheath results, as was the case
for the z-component of current in the preceding graphs. Values are not given
for £< 0.9 MHz in Fig. 9 because of uncertainty in the results. It was men-
tioned that only 12(6/2, w) was subjected to the convergence test involved in

the numerical integration of the integral (42) and (43) because our primary
concern has been to obtain the antenna admittance. Consequently, the numerical
accuracy of I<P cannot be specified; however, values are given in Figs. 8 and 9
only where the convergence of Iqo appears to be reliable.

The azimuthal current arises because the axial magnetic field causes
the antenna to excite a wave with a z-component of magnetic field, a wave
which is not excited when the static magnetic field is zero. Consequently,
it is not unexpected that the azimuthal current is maximum near the electron
cyclotron frequency. The total surface current on the antenna which results
from adding the z and ¢ components is helical in nature,

As the last graph of this series we present in Fig. 10a the antenna
admittance as a function of plasma frequency for a fixed excitation frequency
of 1.0 MHz and a cyclotron frequency of 1. 47 MHz, with the other parameter
values as in the preceding graphs. These values of exciting frequency and
cyclotron frequency were chosen to conform to some experimental data of
Stone, Weber and Alexander (1966) obtained from a rocket-borne antenna in
the ionosphere.

The conductance is seen to be fairly constant for fp< f but increases
almost exponentially with increasing fp beyond this point. The susceptance is
capacitive for fp < 1.25 MHz but becomes inductive for larger fp' The cal-
culated values of the susceptance are not very reliable for fp::‘/ 1.5 MHz
because of computational problems related to overflow. This consideration
is important in this range of fp because the susceptance is essentially obtained
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Fig. 8. The azimuthal current component as a function of frequency for
the zero-temperature magnetoplasma with a vacuum sheath thick-
ness of 5 Dy , an electron plasma frequency of 1 MHz and an
electron cyclotron frequency of 1.5 MHz.
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The azimuthal current component as a function of frequency for
the zero-temperature magnetoplasma with zero sheath thickness,

an electron plasma frequency of 1 MHz and an electron cyclotron
frequency of 1.5 MHz.
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as the difference of two numbers large compared with the final answer.
Consequently the error resulting from the overflow termination before
the truncation error is acceptably small is most important here. For f
values greater than 2 MHz this problem is not as serious.

It is interesting to compare the results of Fig. 10a with the experi-
mental measurements of Stone et. al. mentioned above (given in their Fig.
4 and shown in Fig. 10b), which are plotted as measured reactance and
resistance divided by the free space impedance of the antenna. The ad-
mittance values of Fig. 10a may be used to obtain impedance values (also
shown on Fig. 10a), of which the resistive part exhibits a slight peaking and
then a decreasing trend with increasing fp, as do the measured resistances.
The measured reactance however, does not change from capacitive to in-
ductive as does the calculated value for the infinite antenna. The calculated
results are for a static magnetic field parallel to the infinite antenna, while
the expremental results are for the situation where the antenna is almost per-
pendicular to the field, so that some of the difference between theory and ex-
periment may be due to this factor. In addition, the calculated results are for
the sheathless case, and it has been found that a sheath may somewhat reduce
the region of inductive susceptance. And finally, the calculations are for the
infinite dipole and a comparison with measured results, particularly the
reactance whose sign is dependent upon the antenna length, must bear this
in mind. On the whole, the calculated and measured impedances show a

similar qualitative behavior as a function of plasma frequency.
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Fig. 10a. The infinite antenna admittance and impedance as a function
of electron plasma frequency for the zero-temperature
magnetoplasma with zero sheath thickness, an electron

cyclotron frequency of 1.47 MHz and excitation frequency of
1 MHz.
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III. 2.Comparison of Finite and Infinite Antenna Results:

We now present for purposes of comparison some admittance curves
for a finite length dipole antenna of half-length h equal to 3. 048m(10ft.)
immersed in a zero-temperature magnetoplasma with a parallel magnetic
field calculated from an expression derived by Balmain (1964). The dipole
radius is 1 cm, the same as that of the infinite antenna just discussed. The

admittance curves are shown in Fig, 11 for f = 1. MHz and fp = 1.5 MHz,

h
and in Fig. 12 for f, = 1.5 MHz and f_= 1 MHz, and with U= 10 sec” !, the
value previously used.

A comparison of Fig. 11 with the corresponding sheathless case for
the infinite antenna of Fig. 3 shows that the finite antenna admittance is
qualitatively very similar to that of the infinite antenna for the frequency
range encompassing the electron cyclotron frequency and upper hybrid
frequency . In both cases the structure of the curves is similar, though their
magnitudes are different. Each of the antennas has an admittance maximum
at the electron cyclotron frequency, while the conductance of each exhibits a
rather well pronounced maxima and the susceptance a less sharp discontinuity
in slope near the electron plasma frequency.

The principal differences between Figs. 3 and 11 is the area below
the electron cyclotron frequency of 1 MHz, where the infinite antenna susceptance
remains inductive until the frequency becomes less than 0.6 MHz, in contrast
to the finite antenna susceptance which becomes inductive immediately below fh'
In addition the finite antenna conductance decreases rather sharply with decreasing
frequency whereas the infinite antenna conductance rate of decrease is much less.
Above the upper hybrid frequency, the finite and infinite antenna susceptances
are similar. The conductances however differ in this range by orders of magnitude,

while also the finite antenna conductance has no minimum as does the infinite
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The finite antenna admittance as a function of frequency for
the zero-temperature magnetoplasma with an electron plasma
frequency of 1.5 MHz and electron cyclotron frequency of

1 MHz from the theory of Balmain (1964).
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Fig. 12. The finite antenna admittance as a function of frequency for
the zero-temperature magnetoplasma with an electron plasma
frequency of 1 MHz and electron cyclotron frequency of 1. 5 MHz
from the the.ry of Balmain (1964).
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antenna, at the upper hybrid frequency. This difference between the finite
and infinite antenna conductances near the upper hybrid frequency may be
explained by taking into account the difference between their free-space
admittances and the near-field antenna behavior; a discussion is given in 1.

If Figs. 7 and 12 are now examined where the results for fp< fh’
are presented the infinite and finite antenna admittances may be seen to
compare with each other in somewhat the same fashion as the case for fp >fh.
The conductance and susceptance are seen to have a maximum at the electron
cyclotron frequency. A rather shallow minimum in the infinite antenna con-
ductance and a much deeper minimum in the finite antenna conductance are
seen to occur near the plasma frequency, while the converse behavior is
observed in the susceptances. Again, the finite antenna susceptance is
inductive between the upper hybrid and electron cyclotron frequencies, while
the infinite antenna inductive susceptance region extends to a slightly lower
frequency. Above the upper hybrid frequency and below the plasma frequency,
there is the greatest difference between the admittances of the infinite and finite
antennas, as in the case for fp > fh'

It is of significance and interest to note that both the finite antenna
admittance results, presented in Figs. 11 and 12, and the infinite antenna
results previously given, exhibit a discontinuity in slope or a minimum in the
admittance, at the electron plasma frequency, a feature exhibited by the experi-
mental data of Heikkila et al (1966), obtained from a rocket-borne antenna in the
ionosphere. This characteristic of the experimental admittance. results was

used by Heikkila et al to obtain electron density values, although their appli-

cation of this technique was apparently empirical, not having been predicted by
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any theory and instead showing up unexpectedly in their data. The theoretical
results obtained here would appear to provide some means for explaining the
experimental data and provide a firmer basis for further exploiting this feature
of the antenna admittance as an additional technique for measuring ionospheric
electron densities. It is of interest to mention that in addition, the experimental
results of Heikkila et al (1966) show an admittance maximum slightly above the
electron cyclotron frequency. In view of the calculated admittance values pre-
sented here, this location of the admittance maximum would seem to indicate
the presence of a sheath, which the calculations have shown, would shift such

an admittance maximum upward from the cyclotron frequency.
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IV. Summary and Conclusions.

This investigation has been concerned with finding the admittance of
an infinite, cylindrical antenna which is excited at a circumferential gap of
finite thickness and immersed in a zero-temperature, lossy, anisotropic
plasma with its axis parallel to the static magnetic field. The antenna
admittance has been obtained numerically over a frequency range encompassing
the electron plasma and cyclotron frequencies and the upper hybrid firequency
for plasma parameter values typical of the E-region of the ionosphere. A vacuum
sheath model and inhomogeneous sheath model were considered in the analysis,
but only the vacuum sheath model was used in obtaining the numerical results.
In addition to the admittance, which involves finding the axial antenna current,
some results were given for the azimuthal antenna current. Finally a
comparison of the infinite antenna results were made with admittance values

obtained from a finite antenna model due to Balmain.

The infinite antenna admittance results presented show that the vacuum
sheath tends to decouple the antenna from the plasma, particularly at the
electron cyclotron frequency, and more generally has the effect of reducing the
magnitude of the admittance variations in the frequency range encompassing
the upper hybrid, electron cyclotron and electron plasma frequencies, compared
with the sheathless case. For frequencies outside this range, the sheath has
relatively little effect on the admittance, especially above the upper hybrid
frequency. The sheath in addition appears to have its greatest influence when
the electron cyclotron frequency is less than the electron plasma frequency.

The antenna susceptance is capacitive above the upper hybrid frequency,
becoming inductive below this frequency. The susceptance may again become
capacitive when the frequency is less than the electron cyclotron frequency,

with the location of the susceptance zeros appearing to have no relation to the
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plasma frequency. The electron plasma frequency appears to be related to
admittance minima which occur near it, but does not generally appear to give
rise to as marked variations in antenna admittance as the electron cyclotron
and upper hybrid frequencies. The conductance is, broadly speaking, larger
above the electron plasma frequency and less below it for the 5-D, thick sheath
as compared with the sheathless case. Similarly speaking, the susceptance is
more capacitive for frequencies above the electron cyclotron frequency and
more inductive below it for the 5—DZ sheath compared with the sheathless case.

A comparison of the zero-temperature magnetoplasma admittances
with corresponding results for the magnetic-field-free warm plasma with a
temperature of 1500°K shows that the admittance minimum which occurs at the
upper hybrid frequency in the former case is shifted to the electron plasma
frequency in the latter. The results for the two plasma models above these
respective frequencies are quite similar, while for frequencies less than these
the admittances are generally quite different. It is interesting to note however,
that an admittance maximum is found to occur below the upper hybrid or
electron plasma frequency for the respective plasma models mentioned above,
but which is not present when the magnetic field, sheath thickness and temperature
are all zero.

Some admittance results obtained for a finite antenna oriented parallel to
the static magnetic field and using the same plasma parameter values as for the
infinite antenna calculations reveals that while their admittance magnitudes are
quite different, there is a qualitative similarity in the frequency variation,

A similar result was previously found in I for the zero-temperature, magnetic-
field-free plasma. Consequently, it would appear the infinite antenna results may
be useful in at least qualitatively determining the effects on the admittance of a
finite antenna of varying the various plasma parameters, at least for the sheathless
case. While this may not appear to be an advantage in the situation mentioned
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since closed-form expressions are already available for the finite antenna,

that is not the case for the non-zero temperature plasma, with or without

a magnetic field. Thus the infinite antenna analysis may serve a very useful
purpose for the latter case. In addition, the infinite antenna analysis may also
include a sheath, a feature not presently available in the finite antenna approach,
which as has been seen, may have a considerable influence on the antenna
admittance, Some caution must be exercised here however, since the sheath
can support surface waves which may to some extent nullify the correspondence
between the infinite antenna admittance and the results for a similarly sheathed,
finite antenna.

The results thus far obtained in I and the present study have provided
some basis for comparison with, and interpretation of, experimental measure-
ments of antenna admittance in an ionized medium. It appears that further effort
in the direction of extending the analysis to the more general case of the com-
pressible magnetoplasma 1is indicated, particularly since some experimental
swept-frequency measurements of the admittance of a rocket-borne antenna are
planned. The use of the inhomogeneous sheath model also appears to be to
worthwhile carrying out in order to gain some insight into the relative validity
of the vacuum sheath and sheathless models. Finally, it appears that it may be
useful to investigate the possibility of using the infinite antenna current as a
means of obtaining a solution to the finite antenna. One analysis that uses this

approach is due to Chen and Keller (1962).
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Appendix A: Examination of the Singularities in the Current Integral

We want to establish that while the two components of IZ = IZo + AIZ
contain non-integrable singularities at B = KEo’ their sum does not, so that
Eq. (42) may be integrated along the real B -axis, so long as the electron
collision frequency is non-zero. A discussion of the singularities of I o 18

given in Appendix A of I, where it is shown that the real part of the current,

Ior’ is proportional to
I oo e = - L
or x{1n x) In (%)

in the vicinity of g = KEo’ where

x = [2(KEo"B) /KEO] KEo ©

B

and Ior is thus integrable at = KEo' The imaginary part of Izo’ denoted by

I ., is similarly proportional to

oi
dx _
Ioi o< xInx In (In x)

at B= Ky and is thus non-integrable there.

This being the case, it is then necessary to show that AIZ has the
same behavior as Izo in the vicinity of B = KEo’ but is of opposite sign, so
that the integrandof Eq. (42) will be a proper one. If we examine Eqgs. (37)
and (38) using the small argument approximations for the cylindrical functions
of argument proportional to AEo’ it may be shown from the second and third
lines of Eq. (37) that

A—l’ K2 _’AEoz KeI

lim@B -—KEO
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Consequently, upon using lines (1) and (4) of Eq. (37), it follows that

- K
AI Eo
m~ 'ﬁ_?
lim f—=Ky Eo
From Eq. (35a) we then find that
— R K
Am — = Fo
N2
. Eo
11mB—-—KEO

Thus that part of the integrand of Eq. (42) in the square brackets goes as

K 1
_ Eo (2) 4i <R
[ ]_ ) Ho (AEOC) * 17—%: A

Eo m
) 2i KEo N 21 KEo
2 mc 2 g
Eo Eo
1imB——-KEO

so that the non-integrable parts of the integral do indeed cancel. That is

not to say however that the integrand of Eq. (42) becomes zero at f = KEo’

since we have considered here only the dominant terms. That part of

Kl:‘n which has been neglected compared with the dominant term does contribute

p
to the integral at g = K Note that terms which vary as AEO in the bracket

Eo’
of Eq. (42), where p > -2 will be integrable at the singularity and contribute

to the current integral there.
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